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An important correctness gap exists between formally verifiable distributed system designs and their implemen-
tations. Recently proposed work bridges this gap by automatically extracting, or compiling, an implementation
from the formally-verified design. The runtime behavior of this compiled implementation, however, may devi-
ate from its design. For example, the compiler may contain bugs, the design may make incorrect assumptions
about the deployment environment, or the implementation might be misconfigured.

In this paper we develop TraceLink, a methodology to detect such deviations through trace validation.
TraceLink maps traces, that capture an execution’s behavior, to the corresponding formal design. Unlike
previous work on trace validation, our approach is completely automated.

We implement TraceLink for PGo, a compiler from Modular PlusCal to both TLA* and Go. We present a
formal semantics for interpreting execution traces as TLA", along with a templatization strategy to minimize
the size of the TLA* tracing specification. We also present a novel trace path validation strategy, called sidestep,
which detects bugs faster and with little additional overhead.

We evaluated TraceLink on several distributed systems, including an MPCal implementation of a Raft
key-value store. Our evaluation demonstrates that TraceLink is able to find 9 previously undetected and
diverse bugs in PGo’s TCB, including a bug in the PGo compiler itself. We also show the effectiveness of the
templatization approach and the sidestep path validation strategy.
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1 Introduction

Distributed systems are challenging to design and to build. Recent work has proposed a variety
of approaches to help establish the correctness of distributed system designs and corresponding
implementations. One line of work extracts, or compiles, a system implementation directly from a
formally-checked distributed system design [Hackett et al. 2023a; Hawblitzel et al. 2017; Hristov
and Bieniusa 2024; Wilcox et al. 2015]. With these tools, manual inconsistencies in the translation
from model to implementation are unlikely, because human error is eliminated from the majority
of the translation process.

However, these code extraction and compilation tools are themselves unverified. So, even though
the design is checked, the output implementation may deviate from the design [Chen et al. 2020;
Fonseca et al. 2017; Yang et al. 2011]. Moreover, the extracted implementation cannot be used
as is. It needs additional configuration code. And, it may need to be directly modified to include
important (but potentially buggy) optimizations that are missing from the formal model. Finally,
the system logic is just one aspect that the model must describe. All models of distributed systems
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must also capture the environment. But, there is currently no way to determine if the model’s
version of the environment accurately reflects the environment in which the implementation is
deployed.

We present TraceLink, an approach to validating automatically-compiled implementations.
TraceLink automatically maps a trace of a distributed system implementation to a formal model.
TraceLink is an example of trace validation [Cirstea et al. 2024; Howard et al. 2025], a bug-finding
technique in the broad space of runtime verification [Bartocci et al. 2018; Falcone et al. 2013]. In
the context of TLA*, trace validation has so far been done manually [Cirstea et al. 2024].

Trace validation depends on capturing a trace of implementation state and events [Reger and
Havelund 2016]. These steps are then ingested into the TLA™ tooling [Kuppe et al. 2019; Yu et al.
1999] and corresponded to parts of the formal model with an event-by-event relation that matches
the two. This comparison can pinpoint specific differences between the abstract implementation
traces implied by the system’s formal model, and concrete execution traces recorded at runtime.
Prior work on trace validation for TLA* [Cirstea et al. 2024; Howard et al. 2025], however, requires
significant manual work: the implementation must be instrumented with sufficient logging state-
ments, and each logged event type must be manually related to events in the model. By contrast,
TraceLink is a push-button approach.

We implement TraceLink for PGo [Hackett et al. 2023a], a source-to-source compiler that compiles
formal models in Modular PlusCal (MPCal) into TLA* models that can be formally checked, and
simultaneously into runnable GoLang implementations. TraceLink achieves push-button trace
validation thanks to two key insights: (1) At the implementation level, TraceLink hooks into PGo-
generated systems to include consistent and general-purpose instrumentation of events and state
changes. (2) At the specification level, TraceLink introspects the source model and a set of collected
traces, generating all the necessary setup code a developer would need to begin validating their
system’s traces with the TLA* model checker [Kuppe et al. 2019] against any property supported
by TLA*.

TraceLink also implements causal tracing [Fidge 1988; Mattern 1989], and can consider multiple
causally-allowed interpretations of a single implementation trace during validation. TraceLink has
a small trusted computing base and, as we will show in Section 9, it uncovered a variety of bugs
across all of PGo’s trusted components, including the PGo compiler.

In summary, we make the following contributions:

(1) We present a formal trace semantics to automate the mapping of implementation-level traces
to a formal MPCal model, and we present a templatization scheme that makes it possible to translate
long implementation traces into a manageable amount of TLA*.

(2) We describe the design of TraceLink for the PGo toolchain. This includes auto-instrumentation
of Go code, and extended trace validation logic that takes advantage of vector clocks. We also
introduce a novel sidestep property, which is an interpretation of vector clocks that significantly
shortens the length of the counterexamples produced when a bug is detected.

(3) We evaluate TraceLink on existing systems built using PGo: raftkvs, locksvc, and dqueue.
We report on 9 bugs that we found across PGo’s trusted computing base, split into 6 categories: 1
PGo miscompilation bug, 2 inaccurate network models, 2 runtime instrumentation bugs, 2 incorrect
timeout behaviors, 1 misconfigured failure detector, and an out of place symbolic abstraction. We
show that our sidestep property reduces length of counterexamples by 29%. We also find that our
templatization strategy achieves 93X compression of the generated TLA™.

2 Background

This section introduces the concepts necessary to understand TraceLink’s design. We discuss TLA*,
Modular PlusCal (MPCal), and its compilation by PGo. We also describe vector clocks.
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2.1 TLA*

TLA* [Lamport 1994, 2002] is a formal modeling language to represent and help people reason
about concurrent and distributed systems. It supports set-theoretic reasoning, as well as properties
expressed using temporal logic [Pnueli 1977]. TLA* has been used to prevent and analyze bugs in
large-scale industry systems [Bornholt et al. 2021; Brooker and Desai 2025; Hackett et al. 2023b;
Newcombe et al. 2015]. The strength of this type of design-level modeling is that it is flexible:
developers can construct arbitrary mathematical abstractions that suit their application domain,
with useful models often being much smaller than the target system.

There are multiple tools available for reasoning about TLA*, which can be used alongside one
another depending on need [Konnov et al. 2022]. Apalache [Konnov et al. 2019] offers symbolic
model checking, while the TLA* Proof System [Merz and Vanzetto 2012] is a proof assistant. In this
work, we use the explicit-state Temporal Logic Checker, TLC [Kuppe et al. 2019; Yu et al. 1999],
since we are exploring concrete tracing data.

2.2 PGo and Modular PlusCal

PGo [Hackett et al. 2023a] is a compiler from Modular PlusCal (MPCal)! specifications to both
TLA* and the Go programming language. It can be used to build verified, efficient distributed
systems, and automates translating an otherwise abstract and non-deterministic specification into
an executable implementation.

MPCal, like PlusCal [Lamport 2018], is a modeling language that extends TLA* with imperative
constructs. On its own, PlusCal extends TLA* with explicit processes (as in anything similar to
threads, coroutines, OS processes) and statements (assignments, loops, conditionals), which make
TLA™ more accessible.

MPCal extends PlusCal with definitions that separate a specification’s intended algorithm from
its modeled environment. These are mapping macros, archetypes (a generic form of PlusCal’s
processes), and their instantiations.

2.3 Modular PlusCal by Example

Consider a distributed algorithm that is expressed in terms of network communication. In PlusCal,
this network communication is simulated in-line with the algorithm, and is indistinguishable from
the algorithm’s behavior. With MPCal, this communication can be encapsulated using archetypes,
instantiations, and mapping macros. While we focus on mapping macros due to their importance to
TraceLink’s design, for exposition, we describe a short example of MPCal’s abstraction semantics
end to end.

1 archetype AConsumer(ref net[_], ref proc) {
2 c: while (TRUE) {

3 c1: net[PRODUCER] := self;

4 c2: proc := net[self];

5 }

Listing 1. Example of an MPCal archetype definition.

Listing 1 shows part of a producer-consumer model written in MPCal. It uses an archetype
definition to describe a loop that infinitely sends then receives messages on a network. The send

IMPCal is introduced in the same paper as PGo.
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operation is labelled c1, and writes the process’s own identifier, self, to the network at the known
address PRODUCER. The receive operation is labelled c2, and it receives a value from the process’s
own network connection (address self), which it then writes to the abstract output proc. The
surrounding while loop is labelled ¢, causing c1 and c2 to alternate forever, and, like in PlusCal,
each label identifies an atomic action the process can take. MPCal’s abstraction mechanism allows
Listing 1 to refer to net and proc without assuming what they do.

1 variables network = [id € @..NUM_NODES-1 + ()1,
2 processor = 0;

+  fair process (Consumer € 1..NUM_CONSUMERS) ==
5 instance AConsumer(ref network[_], ref processor)
6 mapping network[_] via ReliableFIFOLink;

Listing 2. MPCal global variable definitions and archetype instantiation.

Listing 2 shows how an MPCal archetype can be instantiated using model variables. Mirroring
how a process must be launched within a system’s implementation, MPCal requires that archetypes
be instantiated in a specific context for model checking. The archetype AConsumer is instantiated
using the instance directive, parameterized with the global network and processor state variables,
which are defined above. Additionally, we constrain the network variable to be viewed via the defi-
nition ReliableFIFOLink, which allows us to customize the modeled behavior when the archetype
reads from or writes to net.

1 mapping macro ReliableFIFOLink {

2 read {

3 await Len($variable) > 0;

4 with (readMsg = Head($variable)) {
5 $variable := Tail($variable);
6 yield readMsg;

, ¥

8 }

9 write {

10 yield Append($variable, $value);
1 }

v}

Listing 3. MPCal mapping macro implementing a reliable FIFO network.

Listing 3 shows the mapping macro with which AConsumer was instantiated, which models a
TCP connection. It has two parts, read and write, which model what happens when the network
resource is read from and written to, respectively. These read and write behaviors are written in
PlusCal syntax, and may contain arbitrary logic. The MPCal-specific syntax is the yield statement,
the $variable identifier, and the $value identifier. $variable refers to an underlying state variable
in the model (it may be both read and assigned), and $value refers to the value that was written to
the resource (only in the context of a write operation).
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In a read context, yield 42 means that the algorithm should receive the value 42, which may
be computed using $variable. In a write context, yield $value + 1 has the effect $variable
:= $value + 1, meaning that the underlying state variable is assigned a value computed using
$value (one greater, in this case). These 2 operations can be used to model arbitrary input/output
primitives, which become the environment of an MPCal algorithm. Note that these definitions rely
on $variable being initialized to a sensible value, which is done during instantiation.

In Listing 3, the mapping macro operates on an underlying TLA* sequence that models in-flight
messages, whose initial value is (). In this context, the read operation requires the underlying
sequence to be non-empty on line 3, pops a message from the front of the buffer on lines 4-5, and
marks the popped message as the mapping macro’s result on line 6. The write operation is one
statement on line 10, which appends $value to the in-flight messages.

2.4 MPCal Critical Sections

TraceLink’s auto-instrumentation depends on PGo’s implementation of critical sections, which we
detail here.

When compiling MPCal, PGo must ensure that the implementation follows the model’s concur-
rency semantics. A key challenge to this is PlusCal’s, and therefore MPCal’s, control flow semantics.
Every collection of statements is grouped under a label, which marks the group as an atomic
operation. In this context, the await statement can arbitrarily abort computation based on a boolean
condition, and either statements cause non-deterministic branching. PGo’s implementation of
these requirements uses a non-nested form of transactions, which provides concurrency isolation
and arbitrary rollback support.

As part of this translation model, PGo passes all effectful runtime behavior through a uniform
API. This API models the following events: read, write, abort, pre-commit, and commit. Read and
write identify all side-effects performed by the compiled MPCal, and allow inspection of all data
“entering” and “leaving” the compiled code. These operations are considered black-box, and should
implement either state variables, or behavior corresponding to a mapping macro, like the one in
Listing 3. Abort, pre-commit, and commit are lifecycle events. We ignore pre-commit for the purposes
of this paper. Abort and commit are the 2 ways a critical section may end, respectively: rollback
and start over, or finish and continue to the next critical section. We discuss our formalization of
these semantics in Section 4.

2.5 Ordering Events with Vector Clocks

TraceLink uses vector clocks [Fidge 1988; Mattern 1989] to establish a partial order between log
entries. If all events in a system are annotated with vector clocks, we can query whether two events
happened one before the other, or if they were concurrent and could have happened in either order.

Vector clocks are in the form of a function from process identifier to a natural number describing
a snapshot of the identified process’s local clock. Vector clocks are partially ordered by the happens-
before relation [Lamport 1978], and they form a lattice over this happens-before relation. A weakness
of vector clocks is that the metadata per message grows with the number of nodes in the system,
which may cause too much overhead for systems with many nodes. In practice, we evaluated
TraceLink on executions involving 26 nodes or fewer, and at that scale these overheads were not a
bottleneck.

3 TracelLink Overview

Figure 1 overviews TraceLink’s design. TraceLink takes as input a formal model of a distributed
system, as well as the tracing data from an execution of a system that is supposed to be an
implementation of the formal model. The formal model is assumed to be written in MPCal, and the
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Fig. 1. Design of TraceLink for the PGo toolchain. This diagram extends Figure 1 from the PGo paper [Hackett
et al. 2023a]. The blue parts are provided by the user. TraceLink components described in this paper are in
green. Note that TraceLink does not modify the PGo compiler.
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implementation is assumed to be compiled using PGo. Given these inputs, TraceLink uses TLC to
explore the possible interpretations of the given execution trace.

To determine whether the implementation behaves correctly in relation to the MPCal specifica-
tion, TraceLink imports the TLA* definitions generated by the PGo compiler. These definitions
include the model’s next-state relation, which can be used as a refinement property [Abadi and
Lamport 1988]. It is also possible reference arbitrary correctness properties from the source specifi-
cation. For example, the raftkvs system comes with 10 properties which could be checked against
implementation traces using this method. It is also possible to write new free-form properties and
check those.

Given this setup, there are specific types of bugs that can and cannot be found by TraceLink.
Some issues stem from the nature of trace validation as a technique, and some issues are specific to
TraceLink. We spend this section discussing TraceLink’s trusted compute base (TCB), and its effect
on TraceLink’s bug finding capability.

3.1 Trusted Computing Base (TCB)

TraceLink’s TCB is the translation code from implementation traces to TLA*, and the TLC model
checker. Notably, the TCB does not include the trace generation process, Go’s runtime, PGo’s
compilation process, any manual modification made to PGo’s output Go code, the formal model, or
assumptions made by the model about the implementation’s environment.

Below, we describe the effect of this TCB on which bugs TraceLink can and cannot detect. We
discuss practical examples of these situations in Section 9.2.

3.2 Detectable Bugs

Inconsistent logging. TraceLink asserts that the implementation’s logging output is logically
self-consistent. While we rely on the TraceLink’s logging code to observe the implementation,
it is not part of the trusted compute base. Any observably incorrect behavior might be incorrect
implementation behavior, or it might be due to an incorrectly implemented logging routine. In
either case, it will raise a validation error. Consider, for example, possible changes to the proc
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variable in Listing 1. Assume the system implementation records setting it to value A, then a
different component reads it and observes value B. If there is no 3rd action to explain the change,
then TraceLink raises an error. The “instrumentation” bug category in Section 9.2 is a real-world
example of this.

Inaccurate environment models. A well-known concern with verified system compilation is
that the assumptions under which verification was performed may not reflect the deployment envi-
ronment. TraceLink evaluates the model’s environment assumptions as it explores implementation
traces, and it will flag divergences between implementation behavior and the environment model.

For example, consider the net variable in Listing 1, whose behavior is defined in Listing 3. When
net is read from, the model removes and returns the first element of an underlying sequence. Done
repeatedly, each element of the underlying sequence should be returned in order, as long as the
sequence is non-empty. The implementation, where this environment definition is replaced with
hand-written library code, must be recorded producing outputs that match this modeled behavior.
The “network assumption”, “timeout model”, and “failure detector” bug categories in Section 9.2
are real-world examples of this.

Miscompilations by PGo. TraceLink asserts that each event in a trace is allowed by the source
model. While TraceLink does not log the result of every arithmetic and data structure operation
that occurs during system operation, any value that becomes observable to the outside world
is recorded. This means that if a PGo miscompilation outputs a wrong value to the world, then
validation will fail. The “miscompilation” bug category in Section 9.2 is a real-world example of
this.

3.3 Undetectable Bugs

Low-level safety issues. TraceLink trusts that the system emitting logs is performing correct
low-level operations, such as memory and resource management. If there are such errors, we expect
that the implementation will crash, or that these errors can be detected using established low-level
safety assertions [Huang et al. 2024]. These are not meaningfully comparable to an abstract model
of the system’s intended logical behavior.

“Two wrongs make a right” scenarios. In a case where there are multiple bugs in an implemen-
tation, the bugs could interfere with each other to coincidentally produce a correct implementation
trace. In this case, trace validation would not detect anything. Re-running the same test scenario
multiple times helps. Fuzzing may also improve our ability to find such issues [Gulcan et al. 2024].

Non-modeled factors. It is possible for an implementation to not fulfill its purpose, while only
performing operations allowed by its formal specification. For example, a system can be specified
to respond to a timeout event by performing a recovery operation. How often that timeout should
occur is rarely modeled in MPCal. A misconfigured timeout value during deployment could cause
recovery routines to run too often, effectively preventing the system from handling requests. Since
recovering from a timeout is a valid behavior, and the intended distribution of timeout events is not
modeled, TraceLink cannot distinguish a normal timeout recovery step from excessive repetition
of that step.

4 Auto-instrumentation and Trace Grammar

Trace validation requires the following: (1) instrumentation to trace behavior of the target im-
plementation; (2) a mapping from implementation trace structure to states in the model. In this
Section, we explain the relationship between PGo’s runtime library and our tracing format’s formal
grammar to handle (1). In Section 5, we give a formal semantics that, alongside introspection of the
associated MPCal specification, enables automatic translation of trace events into TLA™, achieving

@).
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As a PGo-compiled system runs, it tracks all modifications to the system state in terms of the
source MPCal’s state variables. Reflecting MPCal state variable accesses, it divides MPCal critical
sections into a series of sub-steps. These sub-steps need not literally reflect the specification as
written — TraceLink would be oblivious to a significant rewrite of PGo’s code generation, for
example. Only the action as a whole must validate against a corresponding part of the specification.
The relevant sub-steps (detailed in Section 2.4) are read, write, commit, and abort. Each critical
section execution forms a straight-line sequence of read and write steps, ending in either a commit
or an abort step. The length of this sequence is bounded because MPCal critical sections cannot
contain loops, and conditional branches are flattened into non-branching sequences that can be
thought of as “I saw this and then did that”. This means that branches are disambiguated based on
their effect, so a construct like IF TRUE THEN x' = 1 ELSE x' = 1 is indistinguishable from x' = 1
under PGo’s execution tracing.

Our mechanism for implementing program values — the state variable values above — is also
automatic. All program values in a PGo-generated program are serializable to TLA*, and we
rely on this fact. To record precedence between asynchronously logged events, we automate
instrumentation of the target program with vector clocks by modifying PGo’s runtime library.
The process is fully automatic for generated code. When dealing with user Go code, we make
instrumentation semi-automatic by transparently tagging vector clock timestamps onto program
values entering and leaving any custom code. This requires no changes to user code that operates
with pass-through semantics, including sending values across a network or storing them to disk.
In rare cases where user code damages or deletes vector clock data, TraceLink’s validation will
detect the resulting vector clock corruption, and the user code can be edited to avoid the issue. We
discuss these scenarios in Section 9.

By relying on PGo’s runtime support code, we are able to directly instrument all relevant parts
of the implementation using only runtime hooks and introspection of PGo’s existing metadata. We
do not need to rely on, or modify, the PGo compiler. We first explain our tracing semantics through
a small MPCal example, then we give the formal grammar for the general structure.

1 readMsg: 1 "readMsg" <« read(.pc)
2 msg := network[self]; \* recv msg 2 [type — "B"] « read(network, 1)
3 if (msg.type = "A") { s write(msg) « [type — "B"]
4 goto processA; + [type = "B"] « read(msg)
5 } else { s write(.pc) < "processB"
6 commit ()

6 goto processB;

Listing 4. MPCal fragment showing a local variable, an I/O operation, and control flow, alongside an example
trace of critical section events that MPCal would generate.

Listing 4 shows an example MPCal fragment and a trace that is generated by its implementation.
In this example, a process reads from the network (network[self]), receiving a message, and
assigning it to a variable msg. Then, it reads that variable, inspects its type field, and depending on
whether the value is "A" is not, it branches to the labels processA or processB.

Unlike MPCal, which is abstract, traced values are concrete; for the trace in Listing 4 we assume
self = 1andmsg = [type — "B"].Line 2 of the trace is the network access (line 2 of MPCal). Line
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trace = record"

record i= (clock, self, event”, end) complete MPCal critical section

clock = vector clock

self = wvalue current process identifier

event = wvalue « read(var, idx™) read operation
|  write(var, idx", old-value?) <— value write operation

var = MPCal state variable name

idx = wvalue index into a state variable

value m= literal TLA* value

old-value := walue value that was overwritten

end = commit() record changes state as described
|  abort() record has no effect

Fig. 2. Grammar of PGo-generated traces.

3 of the trace is the write to msg (also line 2 of MPCal). Line 4 of the trace is line 3 of the MPCal,
and line 5 of the trace corresponds to line 4 of the MPCal.

Note the special . pc variable in lines 1 and 5 of the trace. This stands for program counter - the
same one from PlusCal’s TLA* translation — and tracks which MPCal label (critical section) should
be executed. It is read once at the start of a critical section, and then written once at the end.

Tracing Format for PGo. Figure 2 gives a formal grammar of PGo’s generated execution trace
format. Names ending with stars, such as event+, may appear 0 or more times using the appropriate
separator. Names marked with question marks, such as old-value?, mark an optional item. Names in
italics reference other grammar productions, while monospace names are part of the literal syntax.
Underlined statements, such as vector clock, semantically describe a value whose structure has
been omitted.

Note that, while the format described here is PGo-specific, we theorize it could be generalized to
other trace validation scenarios. Many parts of the structure are generic already, with the specialized
parts relating to PGo’s specific model for side-effects. Extending or replacing the read/write events
might allow for handling a greater variety of implementation traces.

A trace is a collection of 0 or more records, each of which reflects a critical section executed
by the implementation. The record structure is a generalization of the concepts shown earlier. We
elaborate on the meaning and usage of each component below.

The clock is a vector clock which implies a partial order between records in the trace. Multiple
machines, OS processes, or threads may independently log different parts of a PGo implementation’s
trace with no synchronization, so we use vector clocks to track and record a causal order between
events. This implies that record sequences should be evaluated according to their causal order, not
their lexical order. The self value is the unique TLA* identifier of the current process, and doubles
as its index into the vector clock. We assume that the implementation records vector clocks starting
with the empty clock, and incrementing with no gaps.

The sequence of events in a record is illustrated in Listing 4, which we use as an informal example
of event semantics.

A read event identifies the variable var that was read, indices idx* used by the read operation,
and the value that was received. This reflects the TLA* assertion var[idx]* = value, and can
represent any type of variable access allowed in MPCal. In the most common case of reading a
local state variable, the event looks like value < read(var), with no indices.
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Indices are used to model mapping macro semantics. Line 2 of Listing 4 refers to a mapping
macro, such as the one in Listing 3, which can be parameterized using index syntax. In this case,
the parameter is the network address to access (self), which was recorded as 1 on line 2 of the
example trace.

Conversely, write events represent output events, recording the value that was written rather
than read?. The assignment to msg on line 2 of the MPCal listing appears on line 3 of the trace as a
plain assignment. If the listing contained a network send operation of the form network[idx] :=
val, it would be recorded as write(idx) « val, for the same reasons that a read operation would
be.

The end marker identifies whether the critical section was successful. Successful (committed)
critical sections’ side-effects must be reflected in the rest of the trace, whereas unsuccessful (aborted)
critical sections must have no visible side-effects. While they may not have side-effects, aborted
critical sections still record observations the implementation made, and can help detect instances
where an implementation process saw something invalid before aborting.

5 Interpreting Execution Traces as TLA*

To validate traces, we need to translate them into TLA*. In this section, we present a complete formal
semantics of the translation from any grammatically valid implementation trace to TLA*. These
semantics have the same behavior as the TraceLink implementation, but they omit a significant
code size optimization that we discuss in Section 6. We assume the source MPCal’s TLA™ translation
is imported, and its definitions, invariants, and so forth are contextually available to our translation
(though we re-use none of the next-state definition). We also assume, and therefore do not discuss,
a standard approach to naming fresh variables.

Note that the semantics we present here, including those in the appendices, are new for MPCal.
There is no existing formalism, since the original PGo paper [Hackett et al. 2023a] describes MPCal
through examples. Our work is therefore a step toward a formally described MPCal, though our
semantics cover only the parts of MPCal needed by TraceLink. The only other formalization in the
PlusCal space we are aware of is a TLA* specification of the PlusCal translator, which is part of the
TLA™ tools [Kuppe et al. 2019].

To contextualize our translation rules, Listing 5 shows the auto-generated TLA* definitions that
the later rules build on.

o As a global logical timestamp, we define (line 1) and initialize (line 4) a global vector clock
variable __clock. It is a function from a subset of process identifiers to natural numbers,
which grows from the empty function, and is indexed by the __clock_at definition below.
This variable reflects trace validation’s logical time, and uniquely identifies every event along
every permutation of the underlying trace.

e To index into vector clocks, we define the operator on line 7. The __clock_at operator
implements indexing into a vector clock value, which produces either the number at that
index, or the default value 0°.

2Write operations can optionally store an old-value entry, which can help strengthen trace validation semantics. When
accessing a local variable like msg, a write operation with an old value captures the value the variable used to have, as well
as the incoming value. It is essentially a combined read-then-write record. This is not necessary for trace validation to work,
and is not well-defined in combination with mapping macros. Regardless, more complete trace information can help catch
bugs earlier.

3We choose to reflect the standard implementation of vector clocks here, which is to start with an empty function and grow
its domain to eventually include all known process IDs.
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i VARIABLE __clock 12 __clock_check(self, __next_clock) ==

2 15 LET __idx ==

3 Init == 16 __clock_at(__clock, self) + 1
4 A __clock = () 17 __updated_clock ==

5 A \* Init from original spec 18 (self :> __idx) @@ __clock

6 19 IN A __updated_clock[self] =

7 __clock_at(__clk, __idx) == 20 __next_clock[self]

8 IF __idx € DOMAIN __clk 21 AV __i € DOMAIN __next_clock :
9 THEN __clk[__idx] 22 __next_clock[__i] <=

10 ELSE @ 23 __clock_at(

24 __updated_clock, __i)
25 A __clock' = __updated_clock

Listing 5. Preamble for all TraceLink-generated TLA".

e We assume that all the same state variables from the TLA* specification being validated are
defined, and, as identified on line 5, initialized to the same starting values as in the model
against which we are validating®.

o To define the partial order in which trace validation considers the trace, we defined
__clock_check on line 14. This operator describes the conditions under which a traced event
recorded by process self and marked with clock __next_clock may be evaluated. The updated
global clock (__updated_clock) may only advance at self by 1, as defined on line 16 and
enforced on line 19. This ensures we do not skip any traced events, local or otherwise. The
other requirement, defined on line 21, requires that the recorded clock may never reference
events not yet explored by the global clock. Note that this does not ensure happens-before
between the global and recorded clocks, or recorded clocks along the explored path. This
definition only ensures that the global vector clock updates according to happens-before.

5.1 Worked TLA* Translation Example

To introduce how our semantics are used, we show a TLA* representation of the trace in Listing 4.
Appendix B.1 works through a translation of the associated AServer_network_read definition.
All formal semantics we reference are explained in Section 5.

Listing 6 is the final result of the translation. Next, we explain how this translation is derived
using our formal semantics. In what follows, we assume self = 0 and the smallest vector clock
(@ :> 1), mapping self to 1.

First, since the record ends with commit (), we apply Definition 2a, which generates lines 1, 2,
and 8. From here, each individual event is sequenced according to rule 3, which is applied 4 times
in total, to reduce the 5 events pairwise into one overall continuation-passing sequence. Note that,
while we use LAMBDA and __state extensively in the definitions, the intended interpretation is that
all immediately applied lambdas are treated as syntactic expansion, and, to avoid scoping errors,

4This limitation is not fundamental, since later definitions build a next-state relation that can be applied to any initial state,
but we leave this to future work. For instance, TraceLink currently cannot validate log-rotated traces from a long-running
system (that is, traces whose beginning has been truncated to save space), or traces that are missing events.
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1 A __clock_check(o, @ :> 1)

2 A LET __state@ == __state_get

3 IN A __state.pc[0@] = "readMsg"

4 A AServer_network_read(__state, 1, [type — "B"], LAMBDA __statel
5 LET __state2 == [__statel EXCEPT !.msg[0@] = [type — "B"]I]

6 IN A __state2.msg[0] = [type — "B"]

7 A LET __state3 == [__state2 EXCEPT !.pc[@] = "processB"]
8 IN __state_set(__state3))

Listing 6. Translation of the events in Listing 4, assuming a record with self = 0 and the smallest vector clock
@ :> 1).

statel, and so forth. The

p—

__state and __next_state become sequentially numbered __state®
starting state is always __stateo.

Now, we describe the sequence of 5 definitions which correspond individual trace events to the
generated TLA*.

e Definition 4a generates line 3, which asserts the initial value of . pc.

e Definition 6a generates line 4 by inserting a call to the ReliableFIFOLink mapping macro
read routine, assuming context from Listing 9. The read operation is allowed to arbitrarily
affect the state, so we pass a continuation lambda that receives the possibly-changed state
__statel, replacing __state®.

Definition 4b generates the let-binding starting on line 5, changing __statel into __state2
by replacing process 0’s copy of the local msg variable.

e Definition 4a generates the assertion on line 6, reading the same msg variable back from
__state2, and checking that its value is the same one written just before.

Definition 4b generates the let binding on line 7, which replaces the current __state2 with
__state3, altering the program counter to point to a future step to execute, "processB". The
__state3 binding is the last one in the sequence, so it is the one passed to __state_set on line
8. This commits __state3 as final for this critical section, completing the top-level application
of Definition 2a.

5.2 Next-State Relation

Next ==

def
[record'] = v [record]" (1)

For each record in the trace, Definition 1 shows that TraceLink translates maps that record
directly to choices in a standard TLA* next-state definition (where each choice is marked by
V). This disjunction removes any order between records, and without other constraints, implies
every permutation of events. These permutations are constrained to causal order as part of record
translation, using the __clock_check definition.

Note that this definition implies TraceLink would emit, for example, a 10k choice next-state for
a 10k record trace. We explain how we compress this factor down to a size proportional to the
original TLA* specification in Section 6.
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wet A __clock_check(self, clock)
[ (clock, self event',conmit())] | A LET __state== __state_get (2a)

IN [[event*]]__state_set(_)

A __clock_check(self, clock)
def| N LET __state== __state_get
clock, self, event®, abort = « 2b
[[( f ())]] IN [[event ]]LAMBDA . ( )
__state_set(__state_get)
. def
[[eventl; eventy, events ]]rest(_) = [[eventl]]LAMBDA __state : [[event, events'],, ) (3)

5.3 Translating Trace Records

Definitions 2a and 2b show how each trace record is translated into a TLA* next-state relation. Most
of the semantics are left to the individual events (see below), with specific initial and final steps
defined here. These outer definitions show the context in which individual events are translated,
and enforce causal order between trace records.

Both records that commit and those that abort start with the same definitions; the corresponding
Definitions 2a and 2b both start with the same requirement. Given the record’s self and clock
entries, we begin by checking whether causal order is satisfied relative to the current global clock,
using __clock_check. The record will only be validated when the global vector clock has a suitable
value, relative to the locally recorded clock.

In the rest of these definitions, we use a concept called by-value state, which relies on two
definitions generated by TraceLink: __state_set and __state_get. These function as getters and
setters for all TLA* state variables at once. For example, for state variables x and y, __state_get would
be defined as the expression [x — x, y ~— yI, which yields a function® that maps state variable
names to their values. __state_set is its inverse, binding the members of the function value to
primed state variables, as in __state_set(__state) == A x' = __state.x A y' = __state.y. We
pass this state around as a value, which means we can speculate without binding the next-state
(using x ') until we are ready to commit.

Looking back to Definitions 2a and 2b, if the vector clock is valid, then we build a context in
which to write the translated events. We bind our by-value state to __state using a let binding,
allowing subsequent translation rules to refer to the current state by that name.

The subscript syntax written [[. . . ]|}, Which reads __state_set(_) in Definition 2a, is the output
of the event’s translation, modeled as a continuation. We use continuation passing throughout the
remaining definitions, each time passing in a function that accepts a syntactic next-state value as a
parameter. In Definition 2a, the continuation is just the __state_set definition, meaning to commit
the final next-state value from evaluating the events. In Definition 2b, the continuation ignores
the returned next-state, and instead sets the next-state to the current state, nullifying any state
changes implied by the logged events.

Sequences of events within a traced record are considered to happen one after the other, with
each event operating on the next-state of the previous one. Definition 3 shows how we combine
sequences of multiple events given the continuation rest(_). We first translate event;, then we capture
its result state via a continuation LAMBDA, binding it to __state. By rebinding the current state, we

>Function” here is more commonly called “dictionary” in other languages.
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local . % _
[value — read(var, idx*)]]lrc;:?(i) def| A __state. [var] [self][idx]* = value
A rest(__state)
(4a)
LET __next_state ==
state EXCEPT
write(var, idx") « value]' % &' -
I (var, idx") — value] ;o ) . [var ] [self][idx]* = value |
IN  rest(__next_state)
(4b)
local
. o local def| || read(var, idx") < old-value,
[write(var, idx", old-value) — value] rest() — I[ write(var, idx") « value rest(_) 4o

pass the state produced be evaluating event; to the translation of event,, eventsx. By inductively
applying Definition 3, we can reduce any number of logged events into one continuation-passing
sequence. Note that the overall continuation rest(_) is kept at the end of the chain, to receive the
final next-state value.

Note also that passing a continuation along in this way enables each translation to individually
invoke TLA*’s non-determinism semantics using the V operator. This is necessary to support
non-deterministic mapping macro translations.

5.4 Read and Write Events

Individual read and write events have 3 different interpretations, depending on how the relevant
state variable is defined in the MPCal model. The variant being considered by a given definition is
marked with a superscript “local”, “global”, or “mapping”. A local variable is local to a given MPCal
process, and is syntactically defined within it. Each process has its own copy of the value, and
reads and writes between processes do not interfere with each other. A global variable is, as the
name suggests, global to the entire specification. It is syntactically defined at the top-level scope
of an MPCal specification, and must be passed by reference to an archetype instantiation. Reads
and writes to a global variable are visible across processes. A mapping variable is controlled by a
mapping macro, and its semantics, including behavior under concurrency, are arbitrarily defined
by the listed read and write operations. Which global variable(s) are affected by reads and writes
to a mapping variable is defined by how the process is instantiated — that is, which global model
variable the mapping macro is bound to, and whether the binding is marked with the [_] syntax
(“indexed”).

All MPCal state variables that are visible in a PGo-compiled implementation are uniquely
identified by the pair ArchetypeName.VariableName. Unfortunately, this convention does not match
the TLA* definitions generated by PGo. Appendix A - found in the supplemental material — details
precisely how we relate the two. In this section, we refer to this variable lookup process using the
notation [[var ', [var |, or [ var |™*P"€, labelled with the kind of variable to which the
translation may be applied.

5.4.1 Local Operations. Definitions 4a-4c describe how local variable change events are represented
in TLA*.
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lobal .
s f| A __state. [var & [idx]* = value
lue « read(var, idx") [ 5°0% & 5
[ value (var, idx )]]mt(i) A rest(__state) (5a)
LET __next_state ==
. o global def [__state EXCEPT
[write(var, idx") < value] esi( ) = | ﬂvar]]global lidx]* = value | (5b)
IN  rest(__next_state)
* lobal
. ik local def| [ read(var, idx") « old-value, |*
[write(var, idx", old-value) «— value] rest( ) = II write(var, idx") — value ) (5¢)
[ value < read(var, idx*)]]’r::f;p;“g def var_read(__state, idx", value, rest) ‘ (6a)
[write(var, idx") « value]]r:;:gpjng def var_write(__state, idx*, value, rest) ‘ (6b)

Definition 4a shows that reading acts as an assertion, and matches PlusCal local variable semantics.
Using the by-value state __state, it checks that the state variable of the corresponding name
[var] local ' ihdexed by self, matches the traced value. The __state is passed on to rest unmodified.
The optional indices idx translate exactly to TLA* function application syntax, indexing into the
state variable as many times as there are idx.

Local writes overwrite a state variable, rather than check it. Definition 4b replaces __state with
__next_state, using TLA* EXCEPT syntax to replace the value at [[var]'°. The meaning is similar
to immutable dictionary update syntax in other languages, and it uses the same indexing by self and
idx" as in the read operation. The modified __next_state value is then passed to the continuation
rest, which will implicitly rebind it to the name __state if needed using Definition 3.

Local writes with old-value are a combined read-write operation, fusing both. Definition 4c
invokes both Definitions 4a and 4b, combined into one via Definition 3. The read is placed before
the write, so it checks the initial state, not the state after the write.

5.4.2 Global Operations. Global read-write operations are almost identical to local ones, but
without the implicit reference to self, so the reads and writes apply to one global variable, not
process-specific copies of it. As a result, Definitions 5a-5¢ are almost identical to Definitions 4a-4c,
except for the absence of self indexing, and a different variable name lookup rule [[ var ]]gk’bal.
5.4.3 Mapping Macro Operations. Operations on variables controlled by mapping macros are
translated into operator calls, one per variable, per archetype instantiation in the source MPCal.
That operator contains a compilation of the mapping macro’s implementation, which, like all the
definitions here, operates on a __state value and produces results by continuation-passing.
Definitions 6a and 6b show how control passes to those operators®. Both read and write operations
coincidentally have the same interface. They both operate on the __state value, they can both
accept indices, and they both take the rest(_) continuation and call it with a potentially updated

®Notice that mapping macro reads and writes do not have an old-value form. We include that form out of convenience for
local and global writes, since it is useful and easy to implement, but it is not essential. For mapped variables, it is easier to
ignore the old-value if it is present, rather than to enforce a meaningful “previous value” on arbitrarily overridden MPCal
behavior.
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state value. The value parameter is interpreted as the expected value of a read operation, and the
value to be written for a write operation. Note that with mapping macros, read operations can have
side effects. Due to space limitations, we discuss the translation from mapping macro definitions to
these helper operators in Appendix B.

6 Trace Templatization

The translation process described in Section 5 is complete and can be used on small implementation
traces. But, it scales poorly because it outputs a TLA* specification size proportional to the trace.
Anecdotally, when applied to a 30k element implementation trace, this naive approach produced
over 500k lines of TLA* and overloaded TLC’s parser.

To scale to realistic traces of complex systems, we propose an alternative representation that
yields TLA* specifications of a size proportional to the source MPCal specification. Our key insight
is that, if all the TLA* values from the trace are replaced by placeholders in the naive translation, a
majority of trace record translations become duplicates.

Consider the example translation from Listing 6. If the values for self, vector clock, and expected
value are abstracted away, it is a generic single control flow path through the MPCal critical
section readMsg defined in Listing 4. No trace-specific data is left, only the footprint of how the
implementation chose to implement one of the specification’s control flow paths. Technically, this
means that the size complexity of our generated TLA™ is related to the set of control flow options
explored by the implementation, but since the implementation is itself compiled from the MPCal
specification using PGo, we expect both quantities to be consistent with one another.

i A __clock_check(__record.self
2 A LET __state@ == __state_get
3 IN A __state.pc[__record.self] = __record.elems[1].value

record.clock)

P—

4 A AServer_network_read(__state, __record.elems[2].idxs[1],

5 __record.elems[2].value, LAMBDA __statel
6 LET __state2 == [__statel EXCEPT !.msg[__record.self] =

7 _record.elems[3].valuel]

8 IN A __state2.msg[__record.self] = __record.elems[4].value
9 A LET __state3 == [__state2 EXCEPT !.pc[__record.self] =
10 __record.elems[5].value]

11 IN __state_set(__state3))

Listing 7. Placeholder form of Listing 6, in terms of __record

To implement this placeholder form as valid TLA*, we move the specific traced values into the
binary format that TLC uses for serializing model checker state. We then refactor our translation
to be in terms of an abstract __record that refers to this serialized data.

Listing 7 adapts the naive translation in Listing 6 to this format. Alongside the stored vector
clock and self values, the __record includes a sequence elems, which corresponds directly to the
sequence of events in the original trace record. At each index, elems holds the expected value of
the read or write, as well as any used idx values’.

"This description omits some details. For example, in practice, we check the length of __record.elems as a precondition,
systematically cross-check an additional __record.elems[_].name field, and tag elements as read or write operations.

The name field and read/write tags help avoid type errors when wrongly evaluating a __record value that has a partially
compatible structure, but contains data intended for a different definition.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 350. Publication date: October 2025.



TraceLinking Implementations with Their Verified Designs 350:17

Node A Node B Init state Init state

1+ read(x) IR \VClock: [A:0,B:0] x=1
write(x) « 2 @ @ 2«-read() : VClock: [A:0,B:0]
VClock: [A:1,B:0] -~ ~_VClock: [A:0,B:1] T

i

ocreads) - Invalid
P | B transition:
VClock: [A:2,B:0] | .-~ 2+read(x)
impossible
(a) Trace with events X and Z at node A, and event (b) Possible event orderings of (c) Feasible event orderings of
Y at node B. Each event includes a list of read/ X,Y,Z. Blue edges are vector clock  X,Y,Z relative to an initial state with x
write operations and a vector clock timestamp. orderings. Green edges denote the  set to 7. The red transition is invalid.

actual execution order of events.

Fig. 3. (a) A trace with three events, (b) possible event orderings of these events that ignore state, and (c)
feasible event orderings that account for state.

Retaining Readability. The indirection in the templatized format makes debugging more
difficult. The user can no longer inspect the generated TLA* and see which values were asserted,
and TLC counter-examples will not give visibility into __record.

We work around this by adding two key additional definitions, which TLC will include in every
step of all its counter-examples traces.

First, we add a synthetic __action variable which is always set to the __record value chosen for
a given model checking step. By cross-examining this additional variable alongside the placeholder
TLA™ definition, it is possible to recover the true context of each step in a reported counter-example.

Second, we record a function that maps every known self value to the next step that process is
allowed to take. This means that, if TLC reports a deadlock — meaning it could not identify any
path forward in its interpretation of a trace — then we have a list of the options it considered and
rejected.

7 Trace Path Validation Strategies

So far, we have described TraceLink’s TLA* generation and trace collection features. Now, we show
how TraceLink uses TLC to analyze that data, with attention to how TLC explores paths through
the implementation trace’s state space.

Each event in a trace includes a vector clock timestamp and a set of operations on state. As
discussed in Section 4, the vector clock timestamps partially order the events. Figure 3(a) illustrates
a trace with three events and Figure 3(b) shows the corresponding total and partial orderings of
these events. The total order is for illustration, since the trace does not imply it. In any validation
strategy, TraceLink may pick the true total order, or it may pick a different path that also satisfies
the vector clocks.

The vector clock ordering provides us with two possible trace path validation strategies:

(1) One-path: Select one path among all the paths in the partial order implied by the vector clock
timestamps.

(2) All-paths: Validate every path in the partial order implied by the vector clock timestamps,
covering all possible interpretations of the trace. This could be done using DFS or BFS
traversal.
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These two strategies are natural and have been explored in the literature. For the all-paths strategy,
several optimizations are possible, such as those that perform partial order reduction [Flanagan
and Godefroid 2005].

Figure 3(c) illustrates how the orderings from Figure 3(b) may interact with state. In particular,
note that the transition from the initial state with event Y is impossible. If a system recorded this,
it would be a bug. The one-path strategy may get lucky in finding this bug if the selected path
includes Y as the first event. All-paths will find this bug, but it is an expensive strategy.

We design a third strategy, called one-path-sidestep, that is able to detect the bug in Figure 3(c):

(3) One-path-sidestep: Select and validate one path among all the paths in the partial order

implied by the vector clock timestamps. Also validate that any possible branch away from
the chosen path (“side” transition) must be accepted.

The key idea behind one-path-sidestep is to extend the one-path strategy with a SideStepProgress
check (Listing 8). This check requires that for every process ID, if the vector clock data of its next
step would allow progress, then that next step must be valid in the current state. This statement is
a strengthening of the next-state relation generated by TraceLink. For the example in Figure 3(c),
one-path-sidestep would find the bug regardless of which vector clock ordering is selected.

1 __SideStepProgress ==
2 V self € __self_values :

3 __clock_check(self records[self].clock) => __TryNext(self)

PR—

Listing 8. TraceLink’s partial progress invariant

While one-path-sidestep may find bugs more consistently, its main use is in stripping irrelevant
suffixes from TraceLink’s reported counter-examples. For instance, consider adding a node C to
Figure 3(a), which reports a sequence of valid and unrelated actions P, Q, R, S. TLC is likely to
report a counter-example where Y was found to be invalid after exploring all of P, Q, R, S first,
despite these events being irrelevant. This arbitrary and irrelevant suffix hides that a much shorter
path (in Figure 3(c), just the initial state) also shows Y is invalid. One-path-sidestep will always
report this shorter path, which makes understanding TraceLink’s counter-examples significantly
easier.

Next, we describe the TraceLink implementation and present our evaluation.

8 TraceLink Implementation

We developed TraceLink in a mix of Scala, Go, and TLA*.

TraceLink. For simplicity, we developed TraceLink as an extension to the PGo compiler. We
added new commands to the PGo executable and used its existing parsing routines and data
structures. These 1,370 LOC of Scala changes are purely additive, live in separate folders, and do
not modify PGo’s compiler features.

Our changes handle reading log files, inferring configuration from MPCal, and generating the
TLA™ definitions and data files for trace validation. Our prototype does not contain any handwritten
TLA* files.

Go runtime changes. To instrument PGo-generated systems, we modified PGo’s Go runtime
library with 1,035 LOC. This includes logging (472 LOC), instrumentation to record read and write
steps (49 LOC), concurrency testing to derive more diverse traces (28 LOC), and instrumenting the
Go-land TLA™ value type with vector clock annotations (486 LOC).
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Table 1. Description of systems and their traces that we used to evaluate TraceLink.

System | MPCal LOC TLA*LOC Go LOC Events per trace Concurrency
dqueue 76 99 175 4-22 2
locksvc 80 159 281 10-53 6
raftkvs 990 7,993 3,163 2,772-100,644 6-26

9 Evaluation

We evaluate TraceLink, with a focus on answering the following five research questions:

e RQ1: What sorts of bugs does TraceLink find?

e RQ2: How does the choice of trace validation policy impact bug finding?

e RQ3: What is TraceLink’s overhead, considering model checking performance and the size
of the generated TLA*?

e RQ4: What is the impact of TraceLink’s instrumentation on the Go implementation’s runtime?

e RQ5: What is the manual effort involved in using TraceLink?

To answer these questions, we used TraceLink to validate 3 systems built with PGo. For each
system, we collected a number of execution traces, and then we used TraceLink to validate those
traces against the source MPCal models, for each type of validation available.

9.1 Subject Systems and Trace Collection

We evaluated TraceLink on three systems prototyped using PGo [Hackett et al. 2023a]. Table 1 lists
information about these systems, including the LOC for the MPCal model; and the LOC of TLA*
and Go produced by PGo®. dqueue is a simple producer-consumer model. locksvc is a centralized
lock service. raftkvs is a key-value store based on Raft [Ongaro 2014]. We validated each of these
systems without any preliminary modification, excluding internal changes to PGo’s runtime library
described in Section 8, and any fixes to the bugs we found.

For each configuration of these systems, we collected 10 execution traces per configuration. We
did this by re-running the relevant parts of the systems’ integration test suites with tracing enabled.
To help us gather more diverse traces, we instrumented PGo’s runtime library to add random sleeps
in between I/O operations (randomized stress testing, where each sleep duration is chosen from
an exponential distribution with an average of 100 microseconds), to approximate the schedule
exploration technique in [Burckhardt et al. 2010]. We used a single configuration for dqueue and
locksvc, and we ran raftkvs with node counts from n=1 to n=5, repeating system execution until
we had 10 distinct traces. For more diverse traces, we also ran a variation of raftkvs n=3 with
simulated node failure, which was also part of its test suite. Table 1 lists the range of events for the
10 traces for each system. The table also lists the range of concurrent processes for these traces;
this corresponds to the number of entries in the traced vector clocks.

We parallelized our validation runs across 3 identical bare-metal servers, each with 64GB of
RAM and a 32-core Intel Xeon Silver 4309Y CPU. We validated every trace under each trace
validation policy and collected data on what happened’. We performed validation using TLC
nightly revision bacd9d2.

When reproducing a bug, we used two techniques depending on the bug type. For bugs that
required MPCal fixes, we used correct implementation traces, and validated those traces against

8The MPCal/TLA* models we use are part of the PGo project: https://github.com/DistCompiler/pgo. Each one is in a
subfolder of the same name in the systems/ directory.

9We omitted all-paths validation for rafkvs, since we had to terminate a single all-paths validation of a 3 node execution
when it had not finished within 12 hours.
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Table 2. All the bugs detected with TraceLink during evaluation.

Name Category Description

BUGI network A common MPCal modeling pattern incorrectly implied a strict
assumption  order between send operations across unrelated TCP connections.

BUG?2 network The raftkvs specification incorrectly assumed the implementation

assumption  could precisely count all in-flight messages sent to a server.

PGo’s runtime library incorrectly implemented the @@ operator in a
way that passed all implementation tests and evaluation to date.
TraceLink’s vector clocks instrumentation incorrectly followed state
rollbacks for shared variables, resulting in corrupted traces.

The buffer check from BUG2 was incorrectly instrumented in the

BUGS5 instrumentation . . . . .
implementation, leading to missing happens-before constraints.

BUG3 miscompilation

BUG4 instrumentation

BUGE timeout The raftkvs client was specified to always observe timeouts,
model whereas sometimes the implementation recorded not timing out.
BUG? timeout The raftkvs servers were approximated to either always or never
model detect leader timeouts. The implementation mixes both behaviors.
BUGS failure Failure detectors in raftkvs were modeled as perfectly accurate,
detector which did not reflect the implementation.
BUGY symbolic The raftkvs client was modeled to choose from a set of 3 symbolic

abstraction  requests, which did not reflect arbitrary implementation behavior.

different versions of the corresponding MPCal specification, which exhibited each bug individually.
For implementation bugs, we recreated the bug in question, and gathered 10 execution traces from
the buggy system, which we then validated against a correct MPCal specification.

For validation, we used the MPCal model’s next-state relation as a correctness property via TLA*
refinement [Abadi and Lamport 1988]. We chose not to use the existing correctness properties from
the source models, because checking them adds overhead, and nominally the original specification
has been found to satisfy those properties. Evaluating whether additional issues may be found by
enabling those correctness properties, given that TraceLink’s concrete traces naturally go beyond
those found during bounded model checking, is left as future work.

9.2 RAQT1: Bugs Found with TraceLink

To answer RQ1, we list the 9 bugs we found during our evaluation of TraceLink in Table 2. We
categorize these bugs into 6 categories: network assumption, miscompilation, instrumentation,
timeout model, symbolic abstraction, and failure detector. If a bug does not name a specific system,
that bug could apply to any system using PGo. This does not mean all systems were affected,
however. BUG3 was a compiler bug, but only raftkvs used the affected feature.

Note that, while we found many issues (and one compiler bug) where our MPCal specifications
were inaccurate compared to the implementation, fixing those inaccuracies did not change the out-
come of model checking the specification. The inaccuracies we found were not hiding specification
bugs, and on re-verification, the specifications stayed correct relative to their stated properties.
Specification inaccuracies can cause real problems [Fonseca et al. 2017], however, and the fact that
we found these bugs demonstrates that TraceLink is a means to detect and prevent these issues.
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9.2.1  Network Assumptions (BUG1, BUG2). We found 2 incorrect assumptions about network
behavior in the MPCal specifications we evaluated, both of which had been missed by regular
model checking and conventional testing.

BUGT1 is general, in that it affects any system built with PGo that uses TCP. Due to an ordering
constraint implied by MPCal’s strict critical section semantics, possible network behaviors were left
unexplored during model checking. TraceLink exposed this fact by cross-checking the assumption
with a real network interface.

BUG?2 is specific to raftkvs, and was due to an inaccuracy in how the model represented
checking whether a server had pending messages remaining. The MPCal referred to all in-flight
messages, while the system could only check its inbound buffer. Since the check was a comparison
against 0, the intent was that some mismatch was acceptable as long as the overall condition
worked. TraceLink proved that the number of pending messages could be under-reported as 0 in
practice, meaning that the implementation could diverge from model checked behavior.

9.2.2  Miscompilations (BUG3). TraceLink was able to find a previously-undiscovered bug in the
PGo compiler itself. PGo had been consistently miscompiling the @@ operator with its arguments
swapped, due to a misunderstanding of the operator’s TLA™ meaning. The bug passed a suite of
end-to-end implementation tests because the miscompiled operator worked correctly in context.
The incorrect behavior was in the MPCal itself, where the operator was used incorrectly. This was
missed during model checking because the intended semantics were considered too self-evident
to express as a property, and the implementation (being miscompiled to swap the arguments into
correct order) actually worked.

Since TraceLink exhaustively checks specification-implementation consistency, it can be used to
find bugs like this one, that both conventional model checking and manual testing can miss.

9.2.3 Instrumentation Issues (BUG4, BUG5). These bugs demonstrate that TraceLink is able to detect
errors in its own instrumentation. In each of BUG4 and BUGS, corrupted or under-specified vector
clock data was logged during implementation tracing. Because the vector clocks and implementation
behavior were not consistent, TraceLink raised a validation error. Rather than give unsound
validation results, TraceLink helped us to debug its own instrumentation code.

9.2.4 Timeout Model Issues (BUG6, BUG7). TraceLink was able to detect inaccurate, overly re-
stricted timeout modeling in the raftkvs specification. It is easy to forget a simplifying modeling
assumption like timeouts always fire or never fire, but this assumption is inaccurate in a real
implementation. BUG6 and BUG?7 are two different instances of this issue, which had been set,
forgotten, and not documented in the original MPCal.

This shows that TraceLink can help keep assumptions about system behavior documented, since
it becomes possible to detect when MPCal and implementation behaviors drift apart.

9.2.5 Failure Detector Behavior (BUG8). As well as the undocumented timeout behavior above,
TraceLink was also able to detect the raftkvs model’s well-documented perfect failure detector
assumption, which is explained in its README. We replaced the failure detector with a realistic
model, capable of reporting both false negatives and false positives, and the modified specification
became able to consistently validate implementation traces.

9.2.6 Symbolic Abstractions (BUG9). Sometimes, an MPCal specification uses an obviously inac-
curate definition to abstract a part of the system’s environment. For raftkvs, this was the set of
possible client requests, which was defined to contain 3 representative examples. This could not
be validated against implementation traces, because the true set of valid requests is much more
diverse.
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Table 3. % of instances where a bug is caught, runtime, and counter-example depth when validating traces
with bugs from Table 2 (all of which impact raftkvs), without and with the sidestep strategy.

One-path One-path-sidestep

Configuration | % Triggered Runtime Depth | % Triggered Runtime Depth
raftkvs,n=1 33.33% 14.4s 2666 50.00% 12.7s 1825
raftkvs, n = 2 78.33% 71.8s 10372 78.33% 61.3s 7587
raftkvs,n =3 65.00% 148.7s 15103 70.00% 119.6s 10445
raftkvs, n = 3 +fail 86.67% 101.0s 12801 86.67% 88.8s 8456
raftkvs, n = 4 76.67% 387.9s 29053 78.33% 355.1s 21581
raftkvs,n =5 80.00% 596.0s 39845 81.67% 730.0s 28824

Our fix was to generalize the request set definition to represent the correct format in general,
while keeping the finite approximation as a model-checking only definition. We still need the model
checking-only definition because it is impossible for TLC to enumerate the new infinite set when
exploring possible request patterns. Keeping this type of approximation as a model checking detail
is a best practice in TLA™.

Overall, these bugs cover a broad set of issues in specification-implementation correspondence
that were previously difficult or impossible to detect. We found TraceLink helpful in validating
several pieces of PGo’s trusted code, and we are now more confident in the systems we validated
working as specified.

9.3 RQ2: Bug Finding Performance

To answer RQ2, we measured the effect of TraceLink’s validation policies on the accuracy, runtime,
and counter-example depth when finding the 9 bugs from Table 2, all of which impacted raftkvs.

Table 3 shows a summary of our results for the one-path and one-path-sidestep policies. The %
of instances where a bug is caught means how often, out of all trace validation runs of that type,
the underlying bugs caused a validation failure. Runtime means how long trace validation took to
fail, when it did. Counter-example depth is how long, in TLA* state space terms (and elements
from the recorded trace), the counter-example was on validation failure.

The most significant difference when enabling sidestep is a decrease in counter-example depth
by, on average, 29%. On the other hand, the accuracy in detecting bugs changes relatively little. We
explain this in terms of Figure 3. While in small examples it is possible for single-path validation
to choose X, Y, Z and “get away with it” (as happens more often for 1-node raftkvs), for larger
traces with more complex behaviors, if some other part of the system depended on choosing Y first,
choosing X first will eventually cause a contradiction, and the bug will usually be detected. But, that
contradiction may come hundreds or thousands of events later, leading to a difficult to understand
counter-example. This is where we found sidestep to be especially useful: it is sometimes more
efficient due to the shorter counter-example, but more importantly, its counter-examples pinpoint
the exact state where choosing Y should have been possible, but was not (e.g., the initial state in
Figure 3).

Comparing bug finding runtimes, notice that sidestep is often more efficient than single-path,
but not always. For 5-node raftkvs, sidestep validation terminates over 2 minutes later, even when
finding counter-examples that are 11,021 states shorter. This is because of the overhead of checking
the sidestep condition, which requires iterating over all processes while asserting a variation of the
next-state condition. It is therefore not surprising that, for the raftkvs instance with the largest
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Table 4. TLA™ file sizes, with and without templatization, including the compression ratio.

Configuration | Compressed Size Naive Size Compression
dqueue 9.6 KB 8.0KB 0.8%

locksve 13.4 KB 251KB 1.9%

raftkvs, n=1 96.4 KB 20 MB 20x

raftkvs, n=2 169 KB 17.3MB 103X

raftkvs, n=3 176 KB 18.7 MB  106x

raftkvs, n=3 +fail 187 KB 17 MB 90X

raftkvs, n=4 190 KB 34 MB 181x

raftkvs, n=5 210 KB 49 MB 238x%

number of MPCal processes (26 in total), the time penalty is greater than the savings from a shorter
counter-example.

9.4 RQ3: TraceLink Performance

We consider two elements of TraceLink’s Performance: its runtime relative to executing TLC on a
single path, and templatization effectiveness.

Runtime relative to TLC. We measured the execution time of TLC checking one path of depth
k in the MPCal model without tracing, and compare that with TraceLink’s runtime for a path of
the same length k. In essence, this tells us the overhead of TraceLink compared to plain model
checking.

We found that, for traces with path length 23 < k < 47, the overhead is not measurably different.
For larger instances, like rafkvs n = 3, with a path length of k = 20, 485, TraceLink had an average
overhead of 34.8%, from 9.4s to 5m 28s. This is due to the inherent extra computation that TraceLink
performs, including resolving vector clock ambiguity and asserting the entire raftkvs MPCal
model on every step. In our future work, we plan to further improve TraceLink’s runtime efficiency.

Templatization effectiveness. We now consider the effectiveness of templatization of the
translated TLA™, described in Section 6. Table 4 compares the output of two versions of TraceLink
— with templatization (Compressed) and without (Naive). The numbers are calculated separately
per system and distinct configuration we evaluate, and averaged over all collected traces from that
group.

For traces with more than a few 10s of elements, the compression factor for the TLA* specifically
is 10-100x. This keeps the TLA* output at a size that TLC can read. Overall, we find the gains from
the technique conclusively outweigh the losses at any non-trivial scale.

9.5 RQ4: Instrumentation Performance

To answer RQ4, we considered the performance overhead of TraceLink’s Go instrumentation.
For each system and workload that generated our traces, we measured the overhead between
the baseline non-instrumented execution, tracing without the stress testing, and tracing with
randomized stress testing. We ran each workload 5 times. Across workloads, the executions we
measured ran between 1 second and 47 seconds each.

Our results show a median overhead of 23% due to only tracing, and a median overhead of 37%
when both tracing and stress-testing. We give medians here because measurement noise distorted
the means, with some extreme outliers ranging from 578% to -33% (a speed-up relative to baseline).
We believe the noise is caused by the inherent non-determinism underlying the distributed systems
we tested.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 350. Publication date: October 2025.



350:24 Finn Hackett and Ivan Beschastnikh

9.6 RQ5: Manual Effort

To answer RQ5, we qualitatively identified the manual effort required to set up trace validation for
a PGo prototype using TraceLink.

Compared to verifying a normal TLA?* file, TraceLink requires one additional command-line
invocation: running TraceLink. TraceLink accepts unmodified MPCal files, which contain all the
necessary context to generate a working trace validation environment.

For comparison, the current state of the art in TLA* trace validation is work by Cirstea et
al. [Cirstea et al. 2024]. We asked the authors of this work to validate the locksvc system using
their manual methodology. They reported that it took them 2 hours: 1 hour to adapt the TLA*
definitions, and 1 hour to adapt their additional scripts. Their validation was also able to detect
BUGI1. They speculate that, if they were asked to validate a large specification such as raftkvs, it
would take significantly longer.

The automation advantage of TraceLink is especially important when considering software
evolution. With changes to the specification, manual instrumentation and manual TLA* definitions
would need to be updated. TraceLink, by contrast, could automate rebuilding the TLA* needed for
validation, as long as the original specification was written in MPCal. We believe that the tighter
loop between the model and the compiled implementation enabled by TraceLink will yield a much
faster software engineering process.

10 Related Work

Runtime Verification and Trace Validation. TraceLink can be thought of as an offline version of
Runtime Verification (RV) for distributed systems [Falcone et al. 2021; Francalanza et al. 2018]. This
line of work goes back to work by Sen and Garg [Sen and Garg 2003], which considers checking of
partially ordered traces. There are three elements that distinguish TraceLink from prior work in RV.
(1) We rely on PGo to guarantee that our instrumentation is general-purpose: we capture all possibly
relevant events and state changes so that the trace can be validated against an arbitrary TLA*
specification. (2) We use a formal model, normally unavailable in RV, to infer bindings between
implementation traces and model semantics, automating our TLA™ trace interpretation. (3) We
rely on TLC [Kuppe et al. 2019] for efficient and general-purpose validation. Overall, our goal with
TraceLink is to detect not just implementation issues, but also to find bugs in the model and the
PGo compiler.

Cirstea et al. [Cirstea et al. 2024] is the most recent general-purpose work that we are aware of
on trace validation for TLA*. There are also industrial case studies with the CCF [Howard et al.
2025], eted'®, and Zookeeper [Niu et al. 2022]. These all use manual or semi-automated approaches.
TraceLink, by contrast, is fully automated assuming usage of PGo (Section 9.6).

Choreographic PlusCal [Foo et al. 2023] goes in a different direction, automatically projecting
choreography-like TLA* specifications into runtime monitors, which assert system correctness at
runtime. This technique only works on TLA™ specifications that can be split into locally checkable
assertions, however. TraceLink reconstructs a global view of the system being validated, and is
therefore compatible with all TLA* assertions.

Capturing System Traces. Trace validation requires capturing traces of a distributed system
execution. This has been previously explored by several tools [Beschastnikh et al. 2020; Mace et al.
2018; Sambasivan et al. 2014; Sigelman et al. 2010]. TraceLink’s goal is different from these tools,
and it achieves completeness of capturing externally-visible state transitions by making use of the
PGo compiler.

10See pull request on Github https://github.com/etcd-io/raft/pull/113.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 350. Publication date: October 2025.


https://github.com/etcd-io/raft/pull/113

TraceLinking Implementations with Their Verified Designs 350:25

Improving Implementation Coverage. TraceLink requires diverse input traces. Many ap-
proaches exist for generating such traces from implementations [Dragoi et al. 2024; Kingsbury
2016; Microsoft 2025; Ozkan et al. 2018; Padhye et al. 2019]. Diverse implementation scenarios can
also be derived from formal specifications using model-based testing or fuzzing [Dorminey 2020;
Gulcan et al. 2024; Wang et al. 2023].

This prior work is complementary with TraceLink, as TraceLink would likely find more diverse
bugs with traces produced by these approaches.

Checking distributed system implementations. There is a rich body of related work on
building correct distributed systems. Some of his work operates directly on implementations [Deli-
giannis et al. 2021; Grant et al. 2018; Guo et al. 2011; Leesatapornwongsa et al. 2014; Lukman et al.
2019; Nelson et al. 2019; Ozkan et al. 2018, 2019; Simsa et al. 2010; Yang et al. 2009]. These tools
are practical, but provide only limited guarantees due to scalability challenges. That said, many of
these tools can be a rich source of diverse traces for TraceLink.

11  Future Work and Conclusion

TraceLink and PGo form a closed loop, from an input formal model to an implementation, and
from a trace of the implementation back to the formal model. In our future work, we aim to explore
how this loop can be used to help infer a formal model for a given implementation with minimal
guidance from the user.

In conclusion, we presented an approach to automatically validate a runtime trace of a distributed
system against its formal model. We realized this approach in TraceLink, which we implemented
for the PGo compiler and its MPCal/TLA* modeling languages. Unlike prior work, TraceLink is
entirely automated.

We evaluated TraceLink on three models and two tracing path validation strategies, and we
described the diverse set of 9 bugs that TraceLink uncovered. The key to finding these bugs was
TraceLink’s ability to identify implementation states not represented by the specification, as well
as its ability to validate realistic behaviors that go deeper into model state space than normal
exhaustive model checking could achieve. We also showed that TraceLink’s TLA* generation
method lets it scale to traces with up to 100,000 elements, and that the sidestep validation mode
significantly reduces the depth at which TraceLink can find bugs.

12 Data-Availability Statement

TraceLink is developed as an extension of PGo, which is already open-source!!. The most recent
version of PGo contains the entire TraceLink prototype. By extension, PGo contains all the systems
we validated as demo systems, and the most recent version fixes all bugs found in this paper.

Our evaluation data and scripts are packaged separately [Hackett and Beschastnikh 2025].
This includes 400GB of captured logs and validation counter-examples, as well as the scripts and
documentation to reproduce our experiments.
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A Variable Lookup Rules

We now explain how we use the MPCal instance declarations to relate the ArchetypeName .
VariableName variable naming convention in the traces to TLA* definitions generated by PGo.

Note that a core assumption in this translation process is that each MPCal archetype is instantiated
once per specification. This is universally true for MPCal specifications that currently exist -
the same archetype having two inconsistent instantiations would imply that two conflicting
interpretations of an archetype’s environment co-exist at the same time, which we find unlikely. This
assumption is the only way in which TraceLink does not generalize to all of MPCal; specifications
that re-instantiate multiple configurations of the same archetype are rejected. A more complex
configuration could be used to distinguish which MPCal self value belongs to which instantiation
variant, but we leave this consideration as out of scope.

i1 archetype AServer(ref network[_], ref glob, ref foo, bar)
2 variables msg;

" \%x ...
5 3}
6 variables net = [0 — ()], global;

s process (Server € {0}) == instance AServer(ref net[_], ref global, 42, 11)
9 mapping net[_] via ReliableFIFOLink;

Listing 9. Example MPCal instance declaration

To define the variable name lookup semantics supported by TraceLink, we show all possible
cases in Listing 9. It defines the AServer archetype, where the contents of Listing 4 might be found.
From within AServer, 5 state variables are accessible, and a 6th is always implicit. Scoped from
within AServer, they are: . pc, AServer.network, AServer.glob, AServer.foo, AServer.bar, and
AServer.msg. They are respectively categorized as local (special case), mapping, global, local, local,
and local. Note that we chose different names between parameters and global variables to avoid
ambiguity; it is valid for AServer.network to refer to a global variable named network.

The first variable, . pc, is always assumed to exist in MPCal: the program counter itself. It is the
only local variable that is not tied to any specific archetype, since it is inherent to all of them. Like
in PlusCal, the corresponding TLA™* state variable is always called pc. As a result, TraceLink uses
the special case [[ . pc]'*® = pc.

For AServer.network, the mapping clause on line 9 declares that it is backed by the map-
ping macro ReliableFIFOLink (defined in Listing 3), and ref net[_] on line 8 gives it the un-
derlying TLA* state variable net. The [_] suffix means that it has one idx (the repeated meta-
variable in Definition 6a and 6b) — if it had no [_], it would have no idx, and if it had several
[_1, it would have that number. Usually, mapped variables have either 0 or 1 idx. Given this
information, we can infer that [[AServer.network]]mapping = net, and that traced reads and
writes will be performed by AServer_network_read(__state, __idx@, __value, __rest(_)) and
AServer_network_write(__state, __idx@ value rest(_)), respectively. Note that the dot in
the variable name is converted to an underscore in order to produce a valid TLA* identifier.

AServer.global satisfies [AServer.glob]#°b = global, since it is passed as ref global on
line 8. This means that traced reads and writes will be performed according to Definitions 5a-5c.

) —— y ——
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stmt d_ef

. . * stmt
[stmty 5 stmiy 5 stmis™ ] ) = | Lstmt ]l Geon sate - [stmt + stmts 552 )

AServer.foo is an unusual edge case of MPCal, where a constant value 42 is passed on line 8 to
the parameter ref foo defined on line 1. In this case, the name of ref foo is used to define an implicit
local variable of the same name, initialized to 42. This case satisfies [AServer. foo]°® = foo, and
like the other two below, reads and writes will be performed according to Definitions 4a-4c.

AServer.bar is a by-value archetype parameter, which is initially bound to the value 11 on line
8. It acts as a local variable definition, satisfying [AServer.bar]'°® = bar.

AServer.msg is encapsulated within the AServer archetype on line 2. As a regular local variable,
it satisfies [AServer.msg]'°? = msg.

Looking at all these definitions, notice that the TLA* translation removes the archetype name
prefix. This can cause name collisions. We resolve these name collisions by imitating the PlusCal
generator, since it generates the TLA™ that TraceLink should match against. The tie-breaker is to
append an incrementing number for each repetition of a state variable name, from earliest to latest
in the input file. Assuming a file has 3 different archetypes, each with a local variable called msg,
then their TLA* translations will be renamed according to the sequence msg, msg@, and msg1.

B Mapping Macro Translation

To provide implementations for the operators called in Definitions 6a and 6b, we translate the
mapping macros references in the MPCal model into TLA™. This is not the same translation used in
PGo, since it has a different purpose. In PGo, the mapping macros are woven into the algorithm for
model checking at the PlusCal level. On the other hand, TraceLink requires a version of those macros
that is separated from the rest of the model, and which can be used in the continuation-passing
context we have defined so far.

Many of our translations are the same standard rules common to PlusCal[], so we highlight
cases unique to our translation, or unique to handling MPCal constructs. As in PlusCal and MPCal,
by default, TLA* expressions are passed through unchanged during translation. To distinguish
between MPCal statements and expression context, we mark rules with a superscript of “stmt” or
“expr”. Usage of var, idx", and value refer contextually to parameters of the expansion implied by
Definitions 6a and 6b. That is, the translation is rooted at a synthetic TLA* operator definition of
the form var_read(__state, __idx* __value, __rest(_)) == [[stmts* it_‘;‘test(_), and the identical
corresponding _write form. The statements being translated are those in the related mapping
macro’s read { stmts** }andwrite { stmts*x } blocks, respectively.

We combine the definitions of the read and write forms, since they are identical except for in a
few special cases. For definitions specific to read and write contexts, their label is suffixed with
either “/read” or “/write”, as in “expr/read”, “stmt/write”, and so forth.

Note also that mapping macros, unlike general MPCal, do not allow goto, while loops, or labels.
This means that MPCal mapping macros may only contain straight-line code and branches, so we
do not consider those more complex features in this work.

Definition 7 shows that sequences of MPCal statements are composed in the same way as
sequential trace events (Definition 3) — by continuation passing.

Definitions 8a-8d show the translations of all PlusCal’s control flow statements that are supported
in an MPCal mapping macro context. Notice that branching control flow is handled by duplicating
the continuation. To keep the translation simple, TraceLink mirrors PGo’s own behavior of dupli-
cating control flow branches when compiling control flow. This can lead to code size blow-up, but

» —— > —— { J—
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IF [[ec e
[if (ec) {stmis]} else {stmts;}]]igb ©f THEN [ stmts; i%f,l;_) (8a)
* t
ELSE ﬂstmtszﬂie‘;t‘(i)
V [stmis 2
[either {stmts;} or {stmts’z”}*]]igs];b v [stmts 1 (8b)

\%

expr

stmt def| LET name==[e]

[with (name = e) {stmts"}[[}oq ) = IN  [stmtst]om (8¢)
rest(_)
) e nstmt  def| Jname € [e] " :
[with (name € e) {stmts"} ]| ) = [ stmts® 5 (8d)
rest(_)
LET __next_state ==
state EXCEPT
iablele]” = stmt  def [ -
[svariablele]” = e reac ) L [var J7PPE [__ic* (e, = [e,] ]

IN  rest(__next_state)
(92)
[$variable]*P" €| __state.[var [™PPn¢[__idx]* (9b)

fortunately mapping macros and individual critical sections in MPCal are not usually long, so it is
not common to see this issue in practice.

Given that this translation emits TLA* directly, as opposed to PGo’s architecture which operates
on a PlusCal representation (to which what we write below is inapplicable), we believe it is possible
to avoid code duplication with a small modification to the branch handling described above. Rather
than syntactically expanding the rest(_) continuation into each branch, we can emit a local operator
__rest(__state) == [stmis" i?;;; » which contains one syntactic copy of the continuation. Then,
we can reference that local operator by name as the continuation for each branch. Due to the
reduced TLA™ legibility and potentially large number of indirections, however, we do not use this
approach in our implementation. We leave improving this approach to the point of practicality as
future work.

Definitions 9a and 9b describe the read and write semantics for the special mapping macro
expression $variable. This expression refers to the mapping macro’s underlying state variable,
including any indices __idx that may have been applied to it outside the mapping macro.

Definition 9a shows the semantics of a PlusCal write statement referencing the variable, which
are very similar to 5b. The key differences are the addition of [__idx]* and the translation of e;
and e,. Unlike an implementation trace, where the indices and value are fully evaluated TLA*
expressions ready to insert, an MPCal specification’s sub-expressions may require additional
translation. Additionally, the __idx arguments are unique to mapping macros: they are the originally
applied indices, in this case coming from idx" in the trace, to which the additional mapping macro-
internal indices e; are appended. We write them at __idx in order to distinguish that they are
parameters to our compiled mapping macro, and not metavariables like idx.
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$value] P/ it def __value 10
I

. stmt/read d_ef A __Va].ue = |Ie]]expr
Lyield eleuy™ = | 4 rest(__state) (112)
LET __next_state ==
. stmt/write def [__state EXCEPT
[[yleld e]] rest(_) = 1. [[var]]mapping [__idx]* = [e]®¥] (11b)
IN  rest(__next_state)

Definition 9b describes the translation of $variable in expression position. In this situation,
the result of the expression is the value of the state variable, indexed from __state. As explained
above, __idx" is a sequence of 0 or more pre-applied indices from outside the mapping macro, used
here to index further into the state variable’s value.

When in a write context, mapping macros have access to $value, the value that is being written.
Definition 10 shows that, in TraceLink’s compiled version of mapping macros, this value is always
the macro operator’s parameter __value, which originally comes from the tracing data.

The $value expression is not available in a mapping macro’s read context, so we do not define it.

In a read context, Definition 11a shows that the yield statement translates to an assertion that
the expected value, __value, is equal to the translation of the expression e. Any side-effects the
read operation has must be achieved by separately assigning to $variable, so the yield itself just
marks the value that the algorithm should receive from reading a given mapped variable, which
should always be equal to __value.

In a write context, Definition 11b shows that the yield statement acts like a simplified form of the
assignment rule given by Definition 9a. The write interpretation of yield is to set the underlying
state variable, indexed by 0 or more indices __idx, to the value of e. Unlike an assignment to
$variable, no additional indices e; may be specified.

B.1 Mapping Macro Translation Example

i1 AServer_network_read(__state@, __idx@, __value, __rest(_)) ==
2 A Len(__state@.net[__idxe]) > @
A LET readMsg == Head(__state@.net[__idx@])
4 __statel == [__state@ EXCEPT !.net[__idx@] =
5 Tail(__state@.net[__idx0@])]

6 IN A __value = readMsg

7 A __rest(__statel)

Listing 10. Translation of the read section of Listing 3

Returning to the ReliableFIFOLink mapping macro invoked on line 4, Listing 10 shows how the
mapping macro’s read operation (given in MPCal by Listing 3, lines 2-8) is translated into TLA*
using our definitions.
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The top-level definition is named after the MPCal variable being read or written — this means
the same mapping macro can be translated multiple times, applied to different TLA™ state variables.
As defined in Listing 9, this instantiation has one index, __idx@. As with trace translations, to
satisfy TLA* naming constraints, __state and __next_state in the definitions are interpreted as
sequentially numbered names, starting with the state parameter __state@. __value is the expected
read value given by expanding Definition 6a, and __rest(_) is the continuation, which should be
called with the final __state,,.

All pairs of sequenced statements are reduced using Definition 7, which composes the individual
statement semantics using continuation-passing. As before, immediately applied LAMBDA expressions
are expanded syntactically.

Line 2 comes from the initial await statement, which is compiled using the standard PlusCal
rules, except for the effect of Definition 9b, which replaces $variable with a reference to the
net global variable in __state®, at the correct index __idxe. Line 3 is an application of Definition
8c to translate the with statement that follows. Definition 9b is applied once again to the bound
expression to expand $variable. Lines 4 and 5 are an instance of Definition 9a, which implements
a write to $variable (which still refers to net at __idx®), creating an updated __statel. Definition
9b is used again to expand $variable in the assigned value. Note that we combine the bindings on
lines 3 and 4 for presentation — an exact interpretation of the two rules would produce nested LET
expressions, which is equivalent. Line 6 is an application of Definition 11a to the mapping macro’s
yield statement, comparing readMsg to the __value that was seen by the trace. Line 7 commits
__state1 as the final state within the mapping macro, passing it to __rest. In this example, __rest
would resolve to the LAMBDA whose body starts on line 5 of Listing 6.

pp——
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